Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

4-Dimethylamino- β-nitrostyrene and 4-dimethylamino- β-ethyl- β-nitrostyrene at 100 K

Lamine Hamdellou, ${ }^{\text {a }}$ Olivier Hernandez ${ }^{\text {b }}$ and Jean Meinnel ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire de Cristallographie, Département de Physique, Université Mentouri Constantine, 25000 Constantine, Algeria, and buMR 6226 CNRS, Université de
Rennes 1 'Sciences Chimiques de Rennes', Equipe 'Matériaux Inorganiques, Chimie Douce et Réactivité', Bâtiment 10B, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes, France
Correspondence e-mail: jean.meinnel@univ-rennes1.fr

Received 2 June 2006
Accepted 4 July 2006
Online 11 August 2006

The structures of 4-dimethylamino- β-nitrostyrene (DANS), $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$, and 4 -dimethylamino- β-ethyl- β-nitrostyrene (DAENS), $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$, have been solved at $T=100 \mathrm{~K}$. The structure solution for DANS was complicated by the presence of a static disorder, characterized by a misorientation of 17% of the molecules. The molecule of DANS is almost planar, indicating significant conjugation, with a push-pull effect through the styrene skeleton extending up to the terminal substituents and enhancing the dipole moment. As a consequence of this conjugation, the hexagonal ring displays a quinoidal character; the lengths of the $\mathrm{C}-\mathrm{N}[1.3595$ (15) \AA A $]$ and $\mathrm{C}-\mathrm{C}[1.448$ (2) \AA] bonds adjacent to the benzene ring are shorter than single bonds. The molecules are stacked in dimers with antiparallel dipoles. In contrast, the molecule of DAENS is not planar. The ethyl substituent pushes the nitropropene group out of the benzene plane, with a torsion angle of -21.9 (3). Nevertheless, the molecule remains conjugated, with a shortening of the same bonds as in DANS.

Comment

A large number of conjugated organic compounds have been studied experimentally and theoretically in order to establish the structure-property relationships inducing large non-linear optical (NLO) properties. Among these, β-nitrostyrene derivatives have been very attractive (Oudar, 1977; Zyss, 1979, Dulcic et al., 1981; Cheng, Tam, Marder et al., 1991; Keshari et al., 1993). Such work has tried to determine the role and importance of the number of conjugated double bonds, the electronic biasing strengths of various donor and acceptor groups, charge-transfer enhancement, and the pattern and polarity of multiple substituents. The results of these studies reveal that very large second-order non-linearities can be
obtained with relatively long conjugated molecules containing strongly interacting donor-acceptor groups. For 4-dimethyl-amino- β-nitrostyrene, denoted DANS, the NLO properties found for dilute solutions are very close to those for 4 -dimethylamino- 4^{\prime}-nitrostilbene, usually quoted as an example of a conjugated molecule which exhibits very large nonlinearities (Chemla \& Zyss, 1987; Cheng, Tam, Stevenson et al., 1991). However, a strong steric effect of the methyl substituent was observed in a series of β-methyl $-\beta$-nitrostyrene derivatives (Cho et al., 1996). In particular, the distortion from planarity caused by steric repulsion is able to reduce the optical non-linearities to nearly zero.

DANS

DAENS

We present here the structure of DANS in order to establish the influence of charge transfer upon the molecular geometry, which affects the strength of the NLO properties. In parallel, in order to analyse the importance of steric effects upon conjugation, we also report the structure of 4-dimethylamino-β-ethyl- β-nitrostyrene, denoted DAENS (Pianka, 1963). For both compounds, data collection at 100 K has allowed an

Figure 1
A composite view of the disordered molecule of DANS at 100 K , showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii. The labels of the H atoms have been omitted for clarity.

Figure 2
A view of the molecular unit of DAENS at 100 K , showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii.

organic compounds

increase up to an acceptable level of the ratio of the number of independent observable reflections to the number of leastsquares parameters, compared with the data collection at 293 K. Furthermore, for DANS it appears that the structure is disordered. The static disorder consists of a 180° rotation of 17% of the molecules around their long axis and is similar to that found in trans-stilbene and trans-azobenzene (Brown, 1966a,b; Bouwstra et al., 1983; Finder et al., 1974). In this paper, we report the molecular geometry and crystal packing of DANS, obviously only with regard to the molecule with the most probable orientation, for which atomic displacement parameters have been refined anisotropically.

The molecular structure of DANS is shown in Fig. 1, while selected geometric parameters are given in Table 1. The molecule is almost planar, indicating a high degree of conjugation, with a strong push-pull effect between the nitro and dimethylamine groups through the styrene skeleton. Excluding the dimethylamine group (atom N1 has slightly pyramidal bonds), the highest mean square deviation from the calculated mean plane is 0.014 (2) \AA. The dihedral angle between the mean planes of these two parts of the molecule is $1.4(2)^{\circ}$. The sum of the bond angles around N 1 is $359.2(3)^{\circ}$, close to 360°, revealing the delocalization of the lone pair toward the $\mathrm{N} 1-\mathrm{C} 1$ bond, which is too short [1.3595 (15) A $]$ for a single $\mathrm{N}-\mathrm{C}$ bond. Conjugation through the styrene induces the quinoidal character of the hexagonal ring; the C21-C31 [1.390 (2) Å] and C51-C61 [1.373 (2) Å] bond lengths, roughly parallel to the molecular dipole, are significantly shorter than $\mathrm{C} 1-\mathrm{C} 21 \quad[1.418$ (2) \AA], $\mathrm{C} 1-\mathrm{C} 61$ $[1.423(2) \AA], \quad \mathrm{C} 31-\mathrm{C} 41 \quad[1.4045(17) \AA]$ and $\mathrm{C} 41-\mathrm{C} 51$ [1.4057 (19) A]. For the same reason, the $\mathrm{C} 41-\mathrm{C} 71$ bond [1.448 (2) \AA] is shorter than a single bond.

A perspective view of DAENS is shown in Fig. 2 and selected geometric parameters are given in Table 3. Several differences from the conformation of DANS are found. The most striking feature is the $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8$ torsion angle of $-21.9(3)^{\circ}$, which pushes the nitro and ethyl substituent groups out of the benzene ring plane. The main consequence of this torsion is to decrease the conjugation between the $\mathrm{C} 7=\mathrm{C} 8$ double bond and the dimethylaminobenzene moiety, and hence explains the hypsochromic effect for DAENS,

Figure 3
A crystal packing diagram of part of DANS at 100 K , along the [$\overline{3} 21$] direction, showing the formation of a chain of dimers surrounded by half a chain of two neighbours. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts are represented by dotted lines. For the sake of clarity, the molecule with 17% of the disorder and H atoms not involved in hydrogen bonding have been omitted.
which is yellow, not red like DANS. Nevertheless, a noticeable conjugation remains, evidenced by the shortening of several bonds $[\mathrm{C} 2-\mathrm{C} 3=1.383$ (2) $\AA, \mathrm{C} 5-\mathrm{C} 6=1.391$ (3) \AA, $\mathrm{N} 1-$ $\mathrm{C} 1=1.369$ (2) \AA and $\mathrm{C} 4-\mathrm{C} 7=1.450(2) \AA]$. The conjugation also explains why the N atom of the dimethylamine moiety has lost all pyramidal character [the sum of the bond angles around atom N 1 is $\left.359.02(5)^{\circ}\right]$.

The aforementioned steric hindrance of the ethyl group on the molecular planarity of DAENS must be compared with that of the methyl group in β-methyl- β-nitrostyrene compounds substituted by donors of various strengths on the benzene ring. The value of the torsion angle between the benzene and nitropropene groups in 4-dimethylamino-β-methyl- β-nitrostyrene, with the same donor as in DAENS, is only $1.6(8)^{\circ}$ (Brito et al., 1991), while it is 27.1° in the 4-methoxy analogue (Boys et al., 1993) and 23.7° in the 4-hydroxy-3-methoxy (Zabel et al., 1980) analogue. These values illustrate how molecular conjugation, or in other words the planarity of the molecule, is counter-balanced between steric effects and the strength of donors.

In the crystal structure, molecules of DANS are stacked as dimers, interacting in an antiferroelectric manner, and consequently no second-order NLO effect is observed in the solid state. The distance between the mean planes of the dimer is 3.276 (2) \AA, while the smallest distance is between atoms C1 and N 21 of 3.322 (2) \AA. The dimers are organized in chains along the c axis (Fig. 3) via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between donor and acceptor groups (Table 2). Each chain of dimers is symmetrically surrounded by four other chains, within which the molecular planes are almost perpendicular to the molecular plane of the central chain.

The packing of molecules of (II) in the crystal structure displays short contacts between O atoms and methyl groups (see Table 4 and Fig. 4). The asymmetric interactions of the O atoms with the methyl groups of the dimethylamine group explain the difference between torsion angles $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-$ C9 [10.4 (3) ${ }^{\circ}$] and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10\left[-1.4(3)^{\circ}\right]$. Unfortunately in this non-centrosymmetric structure, the nonplanarity of the molecules does not allow an efficient NLO effect.

Figure 4
A crystal packing diagram of DAENS at 100 K , viewed along [100] and slightly rotated around the c axis, showing asymmetric $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions (dotted lines). For the sake of clarity, H atoms not involved in the hydrogen bonds shown have been omitted.

Experimental

The syntheses of both materials consists of the condensation of 4-dimethylaminobenzaldehyde (DABA) with a nitroolefin. To obtain DANS, a mixture of DABA (0.01 mol) and nitromethane $(0.03 \mathrm{~mol})$ was used at 373 K , with a few drops of butylamine. For DAENS, the synthesis begins with the condensation of DABA with butylamine to obtain the 4-dimethylaminobenzylidene butylamine. After separation, this butylamine reacts with nitromethane in the presence of acetic acid to give the nitrostyrene. Single crystals of DANS were grown by slow evaporation of a solution in toluene. Single crystals of DAENS were obtained from a saturated solution in ethanol prepared at room temparature and slowly evaporated in a refrigerator [m.p. 390 K for DANS and 361 K for DAENS].

DANS

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=192.22$
Orthorhombic, Pbca
$a=10.1460$ (2) £
$b=7.3091$ (2) \AA
$c=25.1662$ (7) A
$V=1866.28(8) \AA^{3}$

Data collection

Bruker APEX-II diffractometer
CCD scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.975, T_{\text {max }}=0.985$
$Z=8$
$D_{x}=1.368 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100$ (1) K
Plate, dark red
$0.26 \times 0.18 \times 0.16 \mathrm{~mm}$

20691 measured reflections
2137 independent reflections 1488 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.037$
$S=1.17$
1488 reflections
161 parameters
H -atom parameters constrained
Prince (1982) modified Chebychev polynomial with five parameters (Watkin, 1994): 1.34, 1.99, 1.39

0.6360 .244

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.22 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.21 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

O11-N21	$1.2394(19)$	C1-C61	$1.423(2)$
O21-N21	$1.240(2)$	C21-C31	$1.390(2)$
N1-C1	$1.3595(15)$	C31-C41	$1.4045(17)$
N1-C9	$1.4554(15)$	C41-C51	$1.4057(19)$
N1-C10	$1.4554(15)$	C41-C71	$1.448(2)$
N21-C81	$1.4313(19)$	C51-C61	$1.373(2)$
C1-C21	$1.418(2)$	C71-C81	$1.336(2)$
C1-N1-C9	$120.35(10)$	C1-C21-C31	$120.75(13)$
C1-N1-C10	$120.11(10)$	C21-C31-C41	$122.46(13)$
C9-N1-C10	$118.73(10)$	C31-C41-C51	$116.55(12)$
O21-N21-O11	$122.53(15)$	C31-C41-C71	$119.10(13)$
O21-N21-C81	$119.86(16)$	C51-C41-C71	$124.35(13)$
O11-N21-C81	$117.61(16)$	C41-C51-C61	$121.93(13)$
N1-C1-C21	$119.90(11)$	C1-C61-C51	$121.91(13)$
N1-C1-C61	$123.75(11)$	C41-C71-C81	$126.72(14)$
C21-C1-C61	$116.34(12)$	N21-C81-C71	$120.71(14)$
C51-C41-C71-C81	1.148	C71-C81-N21-O21	-0.427
C31-C41-C71-C81	-179.887	C21-C1-N1-C9	-6.750
C41-C71-C81-N21	179.863	C61-C1-N1-C10	4.305
C71-C81-N21-O11	179.363		

Table 2
Short-contact geometry ($\AA,^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H91 \cdots O21				
i	1.00	2.55	$3.534(2)$	169
C9-H93 \cdots O11		1.00	2.78	$3.419(2)$
C10-H101 \cdots O11 ${ }^{\text {iii }}$	1.00	2.79	$3.503(2)$	129

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{3}{2},-z+1$; (iii) $-x+\frac{1}{2},-y+1$, $z-\frac{1}{2}$.

DAENS

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
$Z=4$
$M_{r}=220.27$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$D_{x}=1.255 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$a=5.9641$ (1) \AA
$\mu=0.09 \mathrm{~mm}^{-1}$
$b=8.4492$ (1) \AA
$c=23.1400(4) \AA$
$T=100$ (1) K
$V=1166.07(3) \AA^{3}$
Plate, yellow
$0.45 \times 0.34 \times 0.28 \mathrm{~mm}$
Data collection
Nonius KappaCCD area-detector diffractometer
CCD scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.962, T_{\text {max }}=0.976$
14807 measured reflections 5077 independent reflections 2017 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.04$
$\theta_{\text {max }}=35.0^{\circ}$

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.039$
$S=1.14$
2017 reflections
148 parameters
H -atom parameters constrained
Prince (1982) modified Chebychev polynomial with three parameters
(Watkin, 1994): 3.54, -1.10, 3.21
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
with 3060 Friedel pairs
Flack parameter: 0.7 (14)

Table 3
Selected geometric parameters ($\AA^{\circ}{ }^{\circ}$) for (II).

$\mathrm{O} 1-\mathrm{N} 2$	1.232 (2)	C2-C3	1.383 (2)
$\mathrm{O} 2-\mathrm{N} 2$	1.231 (2)	C3-C4	1.395 (2)
N1-C1	1.369 (2)	C4-C5	1.410 (2)
N1-C9	1.454 (2)	C4-C7	1.450 (2)
N1-C10	1.453 (2)	C5-C6	1.391 (3)
N2-C8	1.468 (2)	C7-C8	1.345 (3)
C1-C2	1.421 (2)	C8-C11	1.502 (2)
C1-C6	1.408 (2)	C11-C12	1.527 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	121.12 (15)	C3-C4-C5	116.54 (16)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10$	120.01 (15)	C3-C4-C7	117.66 (15)
C9-N1-C10	117.89 (15)	C5-C4-C7	125.68 (16)
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{O} 2$	122.23 (16)	C4-C5-C6	121.70 (16)
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 8$	117.74 (15)	C1-C6-C5	121.05 (15)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 8$	120.01 (15)	C4-C7-C8	130.66 (16)
N1-C1-C2	120.82 (15)	N2-C8-C7	115.37 (16)
N1-C1-C6	121.69 (15)	N2-C8-C11	114.77 (16)
C2-C1-C6	117.50 (15)	C7-C8-C11	129.85 (16)
C1-C2-C3	120.11 (16)	C8-C11-C12	112.52 (14)
C2-C3-C4	123.06 (15)		
C5-C4-C7-C8	-21.9 (3)	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2-\mathrm{O} 2$	-7.0 (3)
C3-C4-C7-C8	162.26 (19)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	10.4 (3)
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	178.23 (17)	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10$	-1.4 (3)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2-\mathrm{O} 1$	174.21 (17)	$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11$	-3.3 (3)

Table 4
Short-contact geometry $\left(\AA^{\circ}{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 101 \cdots \mathrm{O} 1^{\mathrm{i}}$	1.00	2.47	$3.401(2)$	154
$\mathrm{C} 12-\mathrm{H} 121 \cdots \mathrm{O} 1^{\mathrm{ii}}$	1.00	2.50	$3.499(2)$	175
$\mathrm{C} 9-\mathrm{H} 92 \cdots \mathrm{O} 2^{\mathrm{iii}}$	1.00	2.77	$3.283(2)$	112
$\mathrm{C} 10-\mathrm{H} 102 \cdots \mathrm{O} 2^{\mathrm{iii}}$	1.00	2.82	$3.310(2)$	111
$\mathrm{C} 11-\mathrm{H} 112 \cdots \mathrm{O} 2^{\mathrm{iv}}$	1.00	2.58	$3.539(2)$	161

Symmetry codes: (i) $-x+\frac{1}{2},-y, z+\frac{1}{2}$; (ii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z+2$; (iv) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.

The structure of (I) was first refined without consideration of any static disorder, giving a final R value of 0.067 and $\Delta \rho_{\max }=1.19 \mathrm{e}^{\AA^{-3}}$. Fourier difference maps clearly reveal two peaks on both sides of the ethylenic $\mathrm{C} 71=\mathrm{C} 81$ double bond and approximately equidistant from it. These two peaks were interpreted as C atoms of the ethylenic double bond belonging to a second misoriented molecule of (I). The occupancy ratio was initially set at $0.85: 0.15$ for both disordered molecules and was refined at each refinement step. Geometric soft restraints were simultaneously applied on distances and angles of the disordered moieties, according to values found from density functional theory quantum chemistry calculations. For the final cycles of refinement, only the most probable molecule was refined anisotropically, and an equivalent isotropic displacement parameter was assigned for the atoms of the misoriented molecule. All H atoms were located geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=1.00 \AA$, and refined isotropically using equivalence constraints.

Data collection: SMART (Bruker, 2001) for DANS; COLLECT (Nonius, 2000) for DAENS. Cell refinement: SMART for DANS; DIRAX (Duisenberg et al., 2000) for DAENS. Data reduction: SAINT (Bruker, 2001) for DANS; EVALCCD (Duisenberg et al., 2003) for DAENS. For both compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Issue 12; Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

The authors thank the Centre de Diffractométrie de l'Université de Rennes 1 for data collection on the Nonius KappaCCD and Bruker APEX-II X-ray diffractometers. In particular, the useful advice of Dr T. Roisnel is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ3016). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bouwstra, J. A., Schouten, A. \& Kroon, J. (1983). Acta Cryst. C39, 11211123.

Boys, D., Manríquez, V. \& Cassels, B. K. (1993). Acta Cryst. C49, 387-388.
Brito, I., Manriquez, V., Reyes-Parada, M. I., Cassels, B. K. \& Rodriguez, M. L. (1991). Bol. Soc. Chil. Quim. 36, 95-99.

Brown, C. J. (1966a). Acta Cryst. 21, 146-152.
Brown, C. J. (1966b). Acta Cryst. 21, 153-158.
Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
Chemla, D. S. \& Zyss, J. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals. London: Academic Press.
Cheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. \& Spangler, C. W. (1991). J. Phys. Chem. 95, 10643-10652.

Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. \& Marder, S. R. (1991). J. Phys. Chem. 95, 10631-10643.

Cho, B. R., Je, J. T., Kim, H. S., Jeon, S. J., Song, O. K. \& Wang, C. H. (1996). Bull. Korean Chem. Soc. 17, 693-695.
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. \& Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Dulcic, A., Tang, C. L., Pépin, D., Fétizon, M. \& Hoppilliard, Y. (1981). J. Chem. Phys. 74, 1559-1563.
Finder, C. J., Newton, M. G. \& Allinger, N. L. (1974). Acta Cryst. B30, 411-415.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Keshari, V., Karna, S. P. \& Prasad, P. N. (1993). J. Phys. Chem. 97, 35253529.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Oudar, J. L. (1977). J. Chem. Phys. 67, 446-457.
Pianka, M. (1963). J. Sci. Food Agric. 14, 48-55.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 112-114. New York: Springer-Verlag.
Sheldrick, G. M. (2002). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.
Watkin, D. (1994). Acta Cryst. A50, 411-437.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Zabel, V., Watson, W. H., Cassels, B. K. \& Lang, D. A. (1980). Cryst. Struct. Comтй. 9, 461-467.
Zyss, J. (1979). J. Chem. Phys. 71, 909-916.

